Échangeons, communiquons ...
Année : 2025
Filière : MP
Concours : Mines-Télécom (hors Mines-Ponts)
Matière(s) concernée(s) : Mathématiques
Type(s) de sujet(s) : Exercice
Mots-clés relatifs au contenu de l'épreuve : Intégration terme à terme - Séries entières
Énoncé(s) donné(s)
Soit $(a_n)$ la suite définie telle que pour tout entier naturel $n$, $a_n = (-1)^{n}\int_{0}^{1}\frac{t^{n}}{1+t} dt $
On note $f(x) = \sum_{n=0}^{+\infty} a_{n}x^{n}$
1) Déterminer le domaine de définition de f ainsi que son domaine de continuité.
2) Exprimer $f$ sans utiliser le symbole $\sum$ .
Indication(s) fournie(s) par l'examinateur pendant l'épreuve
Commentaires divers
Aucun commentaire posté pour le moment