Epreuve Orale 87

Informations de classement de l'épreuve
Année : 
2012
Filière : 
MP
Concours : 
CCINP (ou CCP)
Matière(s) concernée(s) : 
Mathématiques
Type(s) de sujet(s) : 
Exercice
Mots-clés relatifs au contenu de l'épreuve : 
Séries de fonctions, Séries de Fourier, Topologie
Détails sur l'épreuve
Énoncé(s) donné(s)
I- (sur 8 points) Exercice 8 d'algèbre de la banque :
On note $M_n(\mathbb{C})$ l'espace vectoriel des matrices carrées d'ordre $n$ à coefficients complexes.
Pour $A = \: (a_{i, j})_{1 \leq i,j \leq n} \in M_n(\mathbb{C})$, on pose : $||A|| = \: \sup \{ |a_{i,j}|, \; 1 \leq i,j \leq n \}$.
a- Démontrez que $||AB|| \leq \: n ||A|| \, ||B||$, puis que, pour tout entier $p \geq 1$,  $||A^p|| \leq \: n^{p-1} \, ||A||^p$.
b- Démontrez que, pour toute matrice $A \in M_n(\mathbb{C})$, la série $\sum \frac{A^p}{p !}$ est absolument convergente. Est-elle convergente ?

II- (sur 12 points)
On pose $F(x) = \: \sum_{n=0}^{+ \infty} (\sin^4 (nx))/n!$ pour $x \in \mathbb{R}$.
a- Etudier la convergence de cette série (simple, uniforme).
b- Montrer que $F$ possède une série de Fourier que l'on calculera.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve
NC
Commentaires divers
NC
Qualité de ce compte-rendu
0
Pas encore de note. Tout membre peut choisir une étoile...