Epreuve Orale 5834

Informations de classement de l'épreuve
Année : 
2019
Filière : 
PC
Concours : 
CCINP (ou CCP)
Matière(s) concernée(s) : 
Mathématiques
Type(s) de sujet(s) : 
Exercice
Détails sur l'épreuve
Énoncé(s) donné(s)

Exercice 1 :


Soit $n\in\mathbb{N}^*$ et on pose $P_n : x\mapsto -4+x+x^2+...+x^n$.
 1) Montrer que l'équation $P_n(x)=0$ possède une unique solution sur $\mathbb{R}_+$. On la note $x_n$.
2) Calculer $x_1$ et $x_2$. Montrer que $x_5<1$.
3) Déterminer le signe de $P_{n+1}(x_n)$. En déduire que $(x_n)$ est monotone puis convergente. On note $\ell$ sa limite.
4 ) Montrer que : $\forall n\in\mathbb{N}^*,\;(x_n)^{n+1}-5x_n+4=0$. Montrer que $\lim\limits_{n\to+\infty}(x_n)^{n+1}=0$. En déduire $\ell$.
5) On pose $d_n=x_n-\ell$. Montrer que $d_n=\frac{(x_n)^{n+1}}{5}$. En déduire que $\lim\limits_{n\to+\infty}nd_n=0$.
6) Montrer que $d_n\sim k\ell^{n+1}$, avec $k$ à déterminer.




Exercice 2 :

Soit $F=\{(x,y,z)\in\mathbb{R}^3,\;x+y+z=0\}$.

1) Donner une base de $F$ et $F^\perp$.
2) Donner la matrice dans la base canonique de la projection orthogonale sur $F$.


Indication(s) fournie(s) par l'examinateur pendant l'épreuve

Commentaires divers

Qualité de ce compte-rendu
0
Pas encore de note. Tout membre peut choisir une étoile...